Engagement of the B cell receptor antigen (BCR) triggers apoptosis on immature B cell lines. We report here that BCR triggering leads to caspase activation followed by Lyn cleavage and induction of apoptosis. The cleavage process is mitochondrion-dependent and involves caspases 9 and 7. Stable expression of the cleaved form of Lyn (Lyn-Delta-N) in Ramos B cells impairs BCR-mediated apoptosis as judged by loss of Delta(psi)m, caspase activation and PARP cleavage. Activation of the main survival pathways upon BCR-triggering was unaltered in both cell variants. However, the PI3-K inhibitor Ly294002 resensitizes Lyn-Delta-N cells to apoptosis. Selected cDNA expression arrays revealed that anti-IgM modulates the expression of approximately 20 genes in both cell variants. Among them, only c-Myc was found to be differentially regulated, which suggests a role for c-Myc in the B cell apoptotic response. Interestingly, c-Myc expression decreased more rapidly in Lyn-Delta-N compared with Lyn-WT cells during the first hours of anti-IgM stimulation. Nevertheless, rapid down-regulation of c-Myc following BCR engagement seems to correlate with the resistance of B cells to apoptosis. Thus, the soluble form of Lyn generated by caspases following BCR triggering acts as an inhibitor of B lymphocyte death likely through the modulation of c-Myc expression.