Previously, we and others have shown that RhoA and ROCK signaling are required for negatively regulating integrin-mediated adhesion and for tail retraction of migrating leukocytes. This study continues our investigation into the molecular mechanisms underlying RhoA/ROCK-regulated integrin adhesion. We show that inhibition of ROCK up-regulates integrin-mediated adhesion, which is accompanied by both increased phosphotyrosine signaling through Pyk-2 and paxillin and inappropriate membrane protrusions. We provide evidence that inhibition of ROCK induces integrin adhesion by promoting remodeling of the actin cytoskeleton. Furthermore, we find that ROCK regulates membrane activity through a pathway involving cofilin. Inhibition of RhoA signaling allows the formation of multiple competing lamellipodia that disrupt productive migration of monocytes. Together, our results show that RhoA/ROCK signaling promotes migration by restricting integrin activity and membrane protrusions to the leading edge.