The contractile tissue of the heart is composed of individual cells, making specific cell-cell contacts necessary to ensure mechanical and electrochemical coupling during beating. These contact sites, termed the intercalated discs, have gained increased attention recently due to their potential involvement in cardiac disease. This article discusses how the intercalated discs are assembled during heart development and how they are affected in cardiomyopathy, with particular emphasis on dilated cardiomyopathy. A model is proposed to relate the alterations that are seen at a molecular level with changes in function observed in that kind of cardiac disease.