Multiphoton microscopy is based on the simultaneous absorption of two photons emitted by a pulsed infrared laser source. In this technique, the excitation is restricted to a very small focus and thus results in optical sectioning a priori without the need of a confocal aperture. Multiphoton microscopy was introduced in live cell imaging as an alternative to confocal microscopy due to its superior qualities, such as the deep penetration depth, the reduced photodamage and the lack of out-of-focus bleaching. However, during the past years, examinations revealed severe limitations to the initial expectations. In the focal plane, photodamage and photobleaching can be worse than in single photon microscopy. However, studies showed that with low excitation intensity and by special technical adaptations photodamage could be avoided successfully. For functional biological imaging multiphoton excitation provides an excellent tool such as the release of caged compounds in a diffraction-limited volume combined with multiphoton or confocal imaging.