Antibodies to dsDNA are specific to SLE and are pathogenic, both due to their ability to deposit in tissues through a variety of mechanisms, and to their ability, when present in immune complexes, to activate inflammatory cells. The relationship of serum anti-dsDNA antibody levels to disease activity is a complex one and the factors that determine whether or not such antibodies will be pathogenic in an individual SLE patient are incompletely understood. Although anti-dsDNA antibodies can be made by naïve B cells and B cells belonging to the B1 and marginal zone subsets, pathogenic anti-dsDNA antibodies have the hallmarks of germinal center development and exposure to T cell help, including accumulation of somatic mutations and class switching to the IgG isotype. Epitope spreading may result in aquisition of cross-reactivities with multiple target organ antigens and aquisition of a memory phenotype will allow these B cells to acquire antigen presentation functions that amplify the autoreactive response. In the early stages of disease, or after remission induction protocols, autoreactive B cells may be susceptible to treatments that target T cell costimulation or that deplete or tolerize naïve and mature B cells. Therapeutic approaches targeting innate immune responses or regulatory T cells are starting to be tested in pre-clinical models. In later disease stages, memory and plasma cell accumulation may render patients more resistant to this type of therapeutic approach. Deposition of anti-dsDNA antibodies in target tissues can stimulate an inflammatory cascade that leads to tissue damage. A number of murine models have now been developed that show that interruption of this cascade can prevent or reverse such damage. This type of approach may be beneficial for individuals with established disease. As we learn more about the specific defects that cause SLE, it may become possible to individualize therapy based on patient specific biologic markers.