Background: Left ventricular (LV) volume-time curves (VTC) have been described to provide quantitative data on the dynamics of global LV performance beyond ejection fraction. However, generation of VTCs by conventional 2-dimensional imaging techniques is inherently limited because of inaccurate geometric volume assumptions. We, therefore, studied whether the new concept of volumetric scanning as realized by real-time 3-dimensional echocardiography (RT-3DE) can be used to provide accurate VTCs.
Methods: In 30 healthy participants, VTCs were generated from 18 to 24 absolute LV volumes per second by transthoracic RT-3DE and compared with magnetic resonance imaging (MRI) used for reference. LVs were traced manually in 9 to 11 parallel, short-axis planes and volumes calculated by disk method. From VTCs, we determined peak ejection rate (PER), peak early filling rate (PFR), time to PER and PFR, and end-diastolic and end-systolic volumes. For initial clinical application, 2 patient groups of coronary (n = 15) and hypertensive heart disease (n = 16) were studied.
Results: In healthy participants, VTCs agreed with MRI (mean errors: PER, -39 +/- 67 mL/s; PFR, -18 +/- 84 mL/s; time to PER, 8 +/- 21 milliseconds; time to PFR 4 +/- 18 milliseconds [not significant vs 0]) whereas VTCs in coronary and hypertensive groups revealed significantly impaired diastolic function. Scanning time for VTCs was only 1 to 2 minutes by RT-3DE and 8 +/- 2 minutes by MRI (P <.001) and time for offline analysis was 22 +/- 5 minutes versus 24 +/- 4 minutes by MRI (not significant).
Conclusions: Generation of VTCs by RT-3DE is feasible and shows excellent agreement with MRI used for reference. Thus, VTCs by RT-3DE is a promising new approach providing access to quantitative information on global LV performance such as LV filling rates that is currently unavailable for the cardiologist.