Atomistic mechanism for hot spot initiation

Phys Rev Lett. 2002 Dec 31;89(28 Pt 1):285501. doi: 10.1103/PhysRevLett.89.285501. Epub 2002 Dec 27.

Abstract

We propose a picture of the role of shock-wave interactions with microscopic voids that leads to significant heating, sufficient to thermally initiate chemical reactions in solid explosives, or phase transitions in metals. The key ingredients to this dramatic overshoot in temperature are: (i) a strong enough shock wave to cause vaporization of material into the void; (ii) the stagnation of low-density vapor (for a wide enough gap) at the far side; and (iii) recompression of the gas (pressure-volume work) from low density back to the original shocked density. We explore dependencies on both shock strength and one-dimensional gap width in atomistic simulations of a two-dimensional unreactive Lennard-Jones solid, comparing observed thermal overshoot with a straightforward model, to show how hot spots can be generated under shock-wave conditions.