We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips <10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P < 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.