Telomeres, the repeated sequences that cap chromosome ends, undergo shortening with each cell division, and therefore serve as markers of a cell's replicative history. In vivo, clonal expansion of T cells during immune responses to both foreign and autoantigens is associated with telomere shortening. To investigate possible immune alterations in Alzheimer's disease (AD) that might impact current vaccine-based therapeutic strategies, we analyzed telomere lengths in immune cell populations from AD patients. Our data show a significant telomere shortening in PBMC from AD versus controls (P=0.04). Importantly, telomere length of T cells, but not of B cells or monocytes, correlated with AD disease status, measured by Mini Mental Status Exam (MMSE) scores (P=0.025). T cell telomere length also inversely correlated with serum levels of the proinflammatory cytokine TNFalpha (a clinical marker of disease status), with the proportion of CD8+ T cells lacking expression of the CD28 costimulatory molecule, and with apoptosis. These findings suggest an immune involvement in AD pathogenesis.