The cyclin dependent kinase (cdk) inhibitor NU6027, 4-cyclohexylmethoxy-5-nitroso-pyrimidine-2,6-diamine (IC(50) vs cdk1/cyclinB1=2.9+/-0.1 microM and IC(50) vs cdk2/cyclinA3=2.2+/-0.6 microM), was used as the basis for the design of a series of 4-alkoxy-2,6-diamino-5-nitrosopyrimidine derivatives. The synthesis and evaluation of 21 compounds as potential inhibitors of cyclin-dependent kinases 1 and 2 is described and the structure-activity relationships relating to NU6027 have been probed. Simple alkoxy- or cycloalkoxy-groups at the O(4)-position were tolerated, with the 4-(2-methylbutoxy)-derivative (IC(50) vs cdk1/cyclinB1=12+/-2 microM and cdk2/cyclinA3=13+/-4 microM) retaining significant activity. Substitutions at the N(6) position were not tolerated. Replacement of the 5-nitroso substituent with ketone, oxime and semicarbazone groups essentially abolished activity. However, the derivative bearing an isosteric 5-formyl group, 2,6-diamino-4-cyclohexylmethoxy-pyrimidine-5-carbaldehyde, showed modest activity (IC(50) vs cdk1/cyclinB1=35+/-3 microM and cdk2/cyclinA3=43+/-3 microM). The X-ray crystal structure of the 5-formyl compound bound to cdk2 has been determined to 2.3A resolution. The intramolecular H-bond deduced from the structure with NU6027 bound to cdk2 is not evident in the structure with the corresponding formyl compound. Thus the parent compound, 4-cyclohexylmethoxy-5-nitrosopyrimidine-2,6-diamine (NU6027), remains the optimal basis for future structure-activity studies for cyclin-dependent kinase inhibitors in this series.