This work describes the method adopted in our laboratories, to produce 94gTc, 95gTc, 95mTc and 96gTc radionuclides via proton-cyclotron irradiation on molybdenum targets of natural isotopic composition. A new set of experimental thin-target excitation functions and "effective" cross-sections for direct natMo(p,xn)(A)Tc [with A = 94, 95, 95, 96] nuclear reactions, with incident proton energy in the range from threshold up to 44 MeV is presented. Some definitions of the equations used and nuclear data traceability are reported. Thick-target yield values were calculated and optimised, by numerical fitting and integration of the measured excitation functions. These values allow optimisation of production yield of one radionuclide, minimising at the same time the yield of the others. Radiochemical separation on NCA technetium radionuclides from both molybdenum target and niobium, zirconium and yttrium radioactive by-products is reported. Quality control tests of the radiotracers were developed for the applications envisaged in environmental metallo-biochemical toxicology.