Myeloid lineage-derived dendritic cells (DCs) are considered the professional antigen-presenting cell type responsible for eliciting T-cell-mediated immune responses. Acute myelogenous leukemia (AML) is a disease in which tumor antigens are expressed by the malignant clone that also has the potential to differentiate into DC-like cells (leukemic DCs) with antigen-presenting capacity. This study investigated whether the constitutive expression of the cytokine interleukin-7 (IL-7) in primary AML cells during their differentiation toward leukemic DCs results in superior antigen-presenting cells. A bicistronic retroviral vector encoding the IL-7 cytokine and the surface immunoselectable low-affinity nerve growth factor receptor (LNGFr) gene was constructed and used for transduction experiments. A serum-free system was used to transduce and differentiate leukemic cells toward leukemic DCs. The study included 8 patients with AML. The transduction efficiency with the cytokine vector varied among patients, ranging from 5% to 30% as judged by LNGFr expression. The leukemic origin of the transduced cells was confirmed in a patient with a chromosomal translocation t(9:11) by fluorescence in situ hybridization analysis. Cytokine modified-cells consistently secreted IL-7 (mean, 415 pg +/- 190/10(6) cells/48 hours; n = 5). We demonstrate that IL-7-transduced cells are included in the differentiated leukemic DC subset, and, as shown in a particular case, that about half of the mature CD80(+) and CD83(+) populations coexpress the LNGFr transgene. In addition, IL-7-modified leukemic cells induce stronger allo-T-cell stimulation and higher amounts of IL-2 production in T cells compared with control groups. Finally, cytokine-transduced leukemic DCs can effectively prime and generate cytotoxic T lymphocytes against autologous leukemic blasts.