Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies: an in vivo study

Biomaterials. 2003 Jan;24(2):197-205. doi: 10.1016/s0142-9612(02)00277-6.

Abstract

The aim of the present study was to investigate and compare the stability and bone ingrowth capacity to screw-shaped titanium implants with five different surface treatments. The implants were: (1) standard turned with a thin blood plasma coat (TP), (2) NaOH-etched dito with pore size 0.2-0.3 microm (E), (3) NaOH-etched with pore size 0.2-0.3 microm and a thin blood plasma coat (EP), (4) electrochemically oxidised with pore size 1-2 microm (O), (5) electrochemically oxidised with pore size 1-2 microm and a thin blood plasma coat (OP). A total of 66 implants were divided into the above-described five groups and inserted for 4 weeks into tibia and femur of 11 rabbits. The implants were evaluated by resonance frequency (RF) measurements at the time of insertion and removal, and analysed histomorphometrically at removal. The RF measurements showed that the implant stability was lower in soft bone compared to dense and increased with time. No significant differences were observed between the different surface modifications. The histomorphometric analysis revealed no statistically significant differences between the implants regarding bone-to-metal contact (BMC) and bone area inside the threads (BA). The above results indicate that thin blood plasma-coated and non-coated screw-shaped titanium implants with turned, NaOH-etched and electrochemically etched surface profiles integrate similarly to bone at 1 month of implantation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Development*
  • Plasma*
  • Prostheses and Implants*
  • Surface Properties
  • Titanium*

Substances

  • Titanium