Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc

Invest Ophthalmol Vis Sci. 2002 Nov;43(11):3444-54.

Abstract

Purpose: To determine whether neural network techniques can improve differentiation between glaucomatous and nonglaucomatous eyes, using the optic disc topography parameters of the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Heidelberg, Germany).

Methods: With the HRT, one eye was imaged from each of 108 patients with glaucoma (defined as having repeatable visual field defects with standard automated perimetry) and 189 subjects without glaucoma (no visual field defects with healthy-appearing optic disc and retinal nerve fiber layer on clinical examination) and the optic nerve topography was defined by 17 global and 66 regional HRT parameters. With all the HRT parameters used as input, receiver operating characteristic (ROC) curves were generated for the classification of eyes, by three neural network techniques: linear and Gaussian support vector machines (SVM linear and SVM Gaussian, respectively) and a multilayer perceptron (MLP), as well as four previously proposed linear discriminant functions (LDFs) and one LDF developed on the current data with all HRT parameters used as input.

Results: The areas under the ROC curves for SVM linear and SVM Gaussian were 0.938 and 0.945, respectively; for MLP, 0.941; for the current LDF, 0.906; and for the best previously proposed LDF, 0.890. With the use of forward selection and backward elimination optimization techniques, the areas under the ROC curves for SVM Gaussian and the current LDF were increased to approximately 0.96.

Conclusions: Trained neural networks, with global and regional HRT parameters used as input, improve on previously proposed HRT parameter-based LDFs for discriminating between glaucomatous and nonglaucomatous eyes. The performance of both neural networks and LDFs can be improved with optimization of the features in the input. Neural network analyses show promise for increasing diagnostic accuracy of tests for glaucoma.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Discriminant Analysis*
  • Glaucoma, Open-Angle / diagnosis*
  • Humans
  • Intraocular Pressure
  • Lasers
  • Neural Networks, Computer*
  • Ophthalmoscopy / methods*
  • Optic Disk / pathology*
  • ROC Curve