The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.