1. The vascular endothelial growth factor (VEGF) family is a focus of interest with respect to novel therapies for cardiovascular disease. Members of this family bind differentially to three receptor tyrosine kinases, namely VEGF-R1, -R2 and -R3, and to the semaphorin receptors neuropilin 1 and 2. The role of VEGF-R1 and the factors that interact exclusively with this receptor (VEGF-B and placenta growth factor) has remained controversial. 2. To further elucidate the role of VEGF-B in blood vessel formation and function, we have expressed, purified and refolded both naturally occurring VEGF-B isoforms and a truncated amino acid 10-108 form. All refolded proteins have been demonstrated to bind to VEGF-R1 with appropriate kinetics in biosensor-based analysis. 3. Robust cell assays for VEGF-R1 ligands, such as VEGF-B, have been problematic. We have developed an assay based on a chimeric receptor consisting of extracellular domains 1-4 of VEGF-R1 and the transmembrane and intracellular domains of gp130. The cell line expresses luciferase to high levels 24 h after exposure to VEGF-A and both refolded VEGF-B167 and the short 10-108 isoform have been demonstrated to be active in this assay. 4. The novel cell-based assay, in combination with a variety of immunochemical approaches, has been used to identify and characterize monoclonal antibodies that neutralize VEGF-B activity.