Information on the establishment of immunodeficiency virus infection through transmission of infected cells is sparse. Dendritic cells (DCs) and T cells may be central to the onset and subsequent spread of infection following mucosal exposure. To directly investigate the consequences of virus being introduced by DCs or T cells, we reinjected ex vivo simian immunodeficiency virus (SIV)-loaded autologous immature DCs and T cells subcutaneously (s.c.) into healthy macaques. s.c. injection of cell-bound virus was used to mirror what may happen if virus-loaded cells pass through an epithelium or perhaps DCs and T cells that immediately entrap cell-free virus, having just crossed an epithelial barrier. Virus load in the plasma was monitored along with combined in situ hybridization and immunohistochemistry to identify the cells replicating virus in the lymphoid tissues. Both DCs and T cells transmitted infection after being pulsed with either wild-type or nef-defective (delta nef) SIVmac239. As seen in animals infected intravenously, replication of delta nef was attenuated compared to that of wild-type virus when introduced in either cell-bound form. Upon examination of the draining lymph nodes (LNs) during the first days of infection, virus-producing CD4(+) T cells predominated in control animals that received s.c. cell-free virus. In dramatic contrast, both SIV-positive macrophages and T cells were detected in the LNs of monkeys infected with cell-associated SIV. Therefore, although both cell-free and cell-associated viruses are infectious, the initial cells amplifying the virus differ. This may have important implications for the subsequent dissemination of infection and/or induction of antiretroviral immunity.