We have analysed the toxicity of highly cationic, artificial alpha-helical antimicrobial peptides on blood cells to assess their suitability for systemic application. Flow cytometric methods, based on the uptake of propidium iodide, were used to obtain a rapid and quantitative estimate of membrane damage to resting and concanavalin A-activated mouse lymphocytes, which was further confirmed by morphological changes as observed by scanning electron microscopy. Membrane permeabilization appeared to correlate with structural characteristics, so that the peptide L-19(9/B), which contains helix-stabilizing aminoisobutyric acid (Aib) residues and is a potent antimicrobial, was also the most lytic towards both mouse lymphocytes and human erythrocytes. Reducing the propensity for helix formation in P19(8) resulted in a marked reduction in in vitro cytotoxicity. Changing the helical sense in D-P19(9/B) also resulted in a significant decrease in cytolytic activity towards both erythrocytes and leucocytes. A limited assessment in BALB/c mice confirmed a lower in vivo toxicity of P19(8) than L-P19(9/B). In a study of the systemic antimycotic activity of P19(8) in a mouse protection model, a modest prolongation in survival of Candida albicans-infected animals after intravenous administration was observed at 5 mg/kg peptide but not at higher doses. The implications of these observations for the systemic use of this type of peptide are discussed.