In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice

Blood. 2002 Sep 15;100(6):2032-9.

Abstract

Fanconi anemia (FA) is a rare autosomal recessive disease, characterized by bone marrow failure and cancer predisposition. So far, 8 complementation groups have been identified, although mutations in FANCA account for the disease in the majority of FA patients. In this study we characterized the hematopoietic phenotype of a Fanca knockout mouse model and corrected the main phenotypic characteristics of the bone marrow (BM) progenitors using retroviral vectors. The hematopoiesis of these animals was characterized by a modest though significant thrombocytopenia, consistent with reduced numbers of BM megakaryocyte progenitors. As observed in other FA models, the hematopoietic progenitors from Fanca(-/-) mice were highly sensitive to mitomycin C (MMC). In addition, we observed for the first time in a FA mouse model a marked in vitro growth defect of Fanca(-/-) progenitors, either when total BM or when purified Lin(-)Sca-1(+) cells were subjected to in vitro stimulation. Liquid cultures of Fanca(-/-) BM that were stimulated with stem cell factor plus interleukin-11 produced low numbers of granulocyte macrophage colony-forming units, contained a high proportion of apoptotic cells, and generated a decreased proportion of granulocyte versus macrophage cells, compared to normal BM cultures. Aiming to correct the phenotype of Fanca(-/-) progenitors, purified Lin(-)Sca-1(+) cells were transduced with retroviral vectors encoding the enhanced green fluorescent protein (EGFP) gene and human FANCA genes. Lin(-)Sca-1(+) cells from Fanca(-/-) mice were transduced with an efficiency similar to that of samples from wild-type mice. More significantly, transductions with FANCA vectors corrected both the MMC hypersensitivity as well as the impaired ex vivo expansion ability that characterized the BM progenitors of Fanca(-/-) mice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / metabolism
  • Cell Culture Techniques
  • DNA-Binding Proteins*
  • Fanconi Anemia / pathology*
  • Fanconi Anemia / therapy
  • Fanconi Anemia Complementation Group A Protein
  • Genetic Therapy / methods*
  • Genetic Vectors / therapeutic use
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mitomycin / pharmacology
  • Phenotype
  • Proteins / genetics
  • Retroviridae / genetics
  • Transduction, Genetic

Substances

  • DNA-Binding Proteins
  • FANCA protein, human
  • Fanca protein, mouse
  • Fanconi Anemia Complementation Group A Protein
  • Proteins
  • Mitomycin