In 1991, Barton and Turelli developed recursions to describe the evolution of multilocus systems under arbitrary forms of selection. This article generalizes their approach to allow for arbitrary modes of inheritance, including diploidy, polyploidy, sex linkage, cytoplasmic inheritance, and genomic imprinting. The framework is also extended to allow for other deterministic evolutionary forces, including migration and mutation. Exact recursions that fully describe the state of the population are presented; these are implemented in a computer algebra package (available on the Web at http://helios.bto.ed.ac.uk/evolgen). Despite the generality of our framework, it can describe evolutionary dynamics exactly by just two equations. These recursions can be further simplified using a "quasi-linkage equilibrium" (QLE) approximation. We illustrate the methods by finding the effect of natural selection, sexual selection, mutation, and migration on the genetic composition of a population.