Neutral endopeptidase 24.11 (NEP) is identical to CD10, which is a differentiation antigen for early B-lymphoid progenitors in the B-cell differentiation pathway. This ectoenzyme is known to have a key role in the control of growth, differentiation, and signal transduction of many cellular systems by regulating bioactive peptides and cytokines. Recently, we demonstrated that NEP/CD10 is upregulated during forskolin-induced choriocarcinoma cell differentiation, suggesting that NEP/CD10 is a trophoblast differentiation marker. The purpose of this study was to clarify the enhancement of NEP/CD10 expression and its signal transduction pathway during phorbol ester (PMA)-induced differentiation of BeWo choriocarcinoma cells. PMA-induced differentiation of BeWo cells was confirmed by morphological change and human chorionic gonadotropin (hCG) secretion, which was completely blocked by a protein kinase C (PKC) inhibitor, Bisindolylmaleimide I (Bis I). On immunoblot analysis, PMA enhanced NEP/CD10 expression in a dose- and time-dependent manner, which was completely abolished by Bis I and a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. PMA also induced phosphorylation of p44/p42 extracellular signal-regulated kinases (ERK) 1 and 2. These observations indicated that activation of PKC by PMA induced differentiation of BeWo cells, and that PMA activated MAPK/ERK, which resulted in the enhancement of NEP/CD10 expression. Furthermore, immunocytochemical analysis showed that NEP/CD10 expression was detected on the membranes of PMA-treated differentiated BeWo cells. In summary, we demonstrated that NEP/CD10 was enhanced during PMA-induced differentiation of BeWo choriocarcinoma cells through a PKC-dependent MEK/ERK signalling pathway. Our findings also suggest that NEP/CD10 may play a functional role in the process of trophoblast differentiation.