Small-molecule metabolism forms the core of the metabolic processes of all living organisms. As early as 1945, possible mechanisms for the evolution of such a complex metabolic system were considered. The problem is to explain the appearance and development of a highly regulated complex network of interacting proteins and substrates from a limited structural and functional repertoire. By permitting the co-analysis of phylogeny and metabolism, the combined exploitation of pathway and structural databases, as well as the use of multiple-sequence alignment search algorithms, sheds light on this problem. Much of the current research suggests a chemistry-driven 'patchwork' model of pathway evolution, but other mechanisms may play a role. In the future, as metabolic structure and sequence space are further explored, it should become easier to trace the finer details of pathway development and understand how complexity has evolved.