Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome

J Immunol. 2002 Jul 15;169(2):1037-49. doi: 10.4049/jimmunol.169.2.1037.

Abstract

Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival post-lung transplantation and is characterized by a persistent peribronchiolar inflammation that eventually gives way to airway fibrosis/obliteration. Acute rejection is the main risk factor for the development of BOS and is characterized by a perivascular/bronchiolar leukocyte infiltration. The specific mechanism(s) by which these leukocytes are recruited have not been elucidated. The CXC chemokines (monokine induced by IFN-gamma (MIG)/CXC chemokine ligand (CXCL)9, IP-10/CXCL10, and IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11) act through their shared receptor, CXCR3. Because they are potent leukocyte chemoattractants and are involved in other inflammation/fibroproliferative diseases, we hypothesized that the expression of these chemokines during an allogeneic response promotes the persistent recruitment of mononuclear cells, leading to chronic lung rejection. We found that elevated levels of MIG/CXCL9, IFN-inducible protein 10 (IP-10)/CXCL10, and ITAC/CXCL11 in human bronchoalveolar lavage fluid were associated with the continuum from acute to chronic rejection. Translational studies in a murine model demonstrated increased expression of MIG/CXCL9, IP-10/CXCL10, and ITAC/CXCL11 paralleling the recruitment of CXCR3-expressing mononuclear cells. In vivo neutralization of CXCR3 or its ligands MIG/CXCL9 and IP-10/CXCL10 decreased intragraft recruitment of CXCR3-expressing mononuclear cells and attenuated BOS. This supports the notion that ligand/CXCR3 biology plays an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of BOS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bronchiolitis Obliterans / etiology
  • Bronchiolitis Obliterans / immunology*
  • Bronchiolitis Obliterans / pathology
  • Cell Migration Inhibition
  • Cell Movement / immunology
  • Chemokine CXCL10
  • Chemokine CXCL11
  • Chemokine CXCL9
  • Chemokines, CXC / antagonists & inhibitors
  • Chemokines, CXC / biosynthesis
  • Chemokines, CXC / metabolism
  • Disease Models, Animal
  • Extracellular Matrix / immunology
  • Extracellular Matrix / pathology
  • Female
  • Humans
  • Intercellular Signaling Peptides and Proteins*
  • Leukocytes, Mononuclear / immunology
  • Leukocytes, Mononuclear / metabolism
  • Lung Transplantation / adverse effects
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Prospective Studies
  • Receptors, CXCR3
  • Receptors, Chemokine / antagonists & inhibitors
  • Receptors, Chemokine / biosynthesis
  • Receptors, Chemokine / metabolism
  • Receptors, Chemokine / physiology*
  • Respiratory Mucosa / immunology
  • Respiratory Mucosa / pathology
  • Syndrome
  • Trachea / immunology
  • Trachea / pathology
  • Transplantation, Homologous / immunology
  • Transplantation, Homologous / pathology

Substances

  • CXCL11 protein, human
  • CXCL9 protein, human
  • CXCR3 protein, human
  • Chemokine CXCL10
  • Chemokine CXCL11
  • Chemokine CXCL9
  • Chemokines, CXC
  • Cxcl11 protein, mouse
  • Cxcr3 protein, mouse
  • Intercellular Signaling Peptides and Proteins
  • Receptors, CXCR3
  • Receptors, Chemokine