T lymphocyte activation signals regulate the expression and transactivation function of retinoid X receptor (RXR) alpha through an interplay of complex signaling cascades that are not yet fully understood. We show that cellular Ser/Thr protein phosphatases (PPs) play an important role in mediating these processes. Inhibitors specific for PP1 and PP2A decreased basal expression of RXR alpha RNA and protein in T lymphocyte leukemia Jurkat cells and prevented activation-induced RXR alpha accumulation in these cells. In addition, these inhibitors attenuated the RXR responsive element (RXRE)-dependent transcriptional activation in transient transfection assays. Inhibitors of calcineurin (CN), by contrast, did not have any effect on the basal RXR alpha expression and even augmented activation-induced RXR alpha expression. Expression of a dominant-active (DA) mutant of CN together with a DA mutant of protein kinase C (PKC)theta;, a novel PKC isoform, significantly increased RXRE-dependent transcription. Expression of catalytically inactive PKC theta; or a dominant-negative mutant of PKC theta; failed to synergize with CN and did not increase RXRE-dependent transcription. Expression of a DA mutant of PKC alpha or treatment with PMA was found to attenuate PKC theta; and CN synergism. We conclude that PP1, PP2A, and CN regulate levels and transcriptional activation function of RXR alpha in T cells. In addition, CN synergizes with PKC theta; to induce RXRE-dependent activation, a cooperative function that is antagonized by the activation of the conventional PKC alpha isoform. Thus, PKC theta; and PKC alpha may function as positive and negative modulators, respectively, of CN-regulated RXRE-dependent transcription during T cell activation.