Leucine-rich repeats of the class II transactivator control its rate of nuclear accumulation

Hum Immunol. 2002 Jul;63(7):588-601. doi: 10.1016/s0198-8859(02)00400-7.

Abstract

Activation of class II major histocompatibility complex (MHC) gene expression is regulated by a master regulator, class II transcriptional activator (CIITA). Transactivation by CIITA requires its nuclear import. This study will address a mechanistic role for the leucine-rich repeats (LRR) of CIITA in regulating nuclear translocation by mutating 12 individual consensus-motif "leucine" residues in both its alpha-motifs and beta-motifs. While some leucine mutations in the LRR motif of CIITA cause congruent loss of transactivation function and nuclear import, other alanine substitutions in both the alpha-helices and the beta-sheets have normal transactivation function but a loss of nuclear accumulation (i.e., functional mutants). This seeming paradox is resolved by the observations that nuclear accumulation of these functional mutants does occur but is significantly less than wild-type. This difference is revealed only in the presence of leptomycin B and actinomycin D, which permit examination of nuclear accumulation unencumbered by nuclear export and new CIITA synthesis. Further analysis of these mutants reveals that at limiting concentrations of CIITA, a dramatic difference in transactivation function between mutants and wild-type CIITA is easily detected, in agreement with their lowered nuclear accumulation. These experiments reveal an interesting aspect of LRR in controlling the amount of nuclear accumulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Active Transport, Cell Nucleus
  • Animals
  • COS Cells
  • Cell Nucleus / metabolism*
  • Chlorocebus aethiops
  • Histocompatibility Antigens Class II / chemistry
  • Histocompatibility Antigens Class II / genetics
  • Histocompatibility Antigens Class II / metabolism*
  • Humans
  • Leucine / genetics
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Nuclear Proteins*
  • Protein Structure, Tertiary
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Repetitive Sequences, Amino Acid
  • Trans-Activators / chemistry
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*

Substances

  • Histocompatibility Antigens Class II
  • MHC class II transactivator protein
  • Nuclear Proteins
  • Recombinant Fusion Proteins
  • Trans-Activators
  • Leucine