The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.