Preliminary evidence gathered in rodents and livestock suggested that a phase I chloroform:methanol residue (CMR) extracted vaccine was safe and efficacious in protecting these animals from challenge with the obligate phagolysosomal pathogen (Coxiella burnetii). Prior to the initiation of phase II studies in human volunteers, we compared, in non-human primates (Macaca fascicularis), the efficacy of CMR vaccine with Q-Vax, a licensed cellular Australian Q fever vaccine that has been demonstrated to provide complete protection in human volunteers. Vaccine efficacy was assessed by evaluating thoracic radiographs and the presence of fever and bacteremia in monkeys challenged by aerosol with Coxiella burnetii. Changes in blood chemistries, hematology, behavior and pulmonary function were also examined. CMR, whether administered in single 30 or 100 microg doses or two 30 microg subcutaneous doses, gave equivalent protection in vaccine recipients as a single 30 microg dose of Q-Vax. In addition, vaccination resulted in significant, although temporary, increases in specific antibody titers against C. burnetii phases I and II antigens. The C. burnetii CMR vaccine may be an efficacious alternative to cellular Q fever vaccines in humans.