The pars tuberalis (PT) region of the anterior pituitary plays a physiological role in seasonal animals. The primary signal transduction mechanism of the melatonin receptor in this tissue is an inhibition of cAMP signaling. However, nothing is known about the endocrine signals that activate cAMP synthesis in the cells of the PT, as previous studies relied on the pharmacological tool, forskolin, to stimulate cAMP synthesis. Here we show that pituitary adenylate cyclase-activating polypeptide (PACAP) activates cAMP synthesis in the cells of the PT. The pharmacology of cAMP activation by PACAP peptides suggests that cAMP activation is mediated by the type I PACAP receptor. PACAP treatment of PT cells results in cellular responses that are consistent with cAMP activation in these cells, including activation of MAPK and elevation of melatonin receptor mt1 mRNA expression. These responses can be inhibited by melatonin, demonstrating that activation of cAMP occurs within the melatonin-responsive cells. However, although PACAP activates cAMP in the cells of the PT, the effect of PACAP may not be direct, as colocalization in situ hybridization studies demonstrates that the type I PACAP receptor and the melatonin mt1 receptor do not colocalize on the cells of the PT.