Expression of the novel epithelial Ca2+ channel ECaC1 in rat pancreatic islets

J Histochem Cytochem. 2002 Jun;50(6):789-98. doi: 10.1177/002215540205000605.

Abstract

The epithelial Ca2+ channel, ECaC1, is primarily expressed in the apical membrane of vitamin D-responsive tissues. This study characterizes for the first time the presence of this novel channel in pancreatic tissue by reverse transcriptase-polymerase chain reaction and immunohistochemistry. In addition, the expression of ECaC1 was investigated in an animal model for Type 2 diabetes mellitus, the Zucker diabetic fatty (ZDF) rat. Identical staining patterns for ECaC1 and insulin were observed, whereas no co-localization of ECaC1 with glucagon was found. ECaC1, insulin, and prohormone convertase 1 (a neuroendocrine endoprotease expressed in secretory granules) showed a similar punctate staining. ECaC1 co-localized with the Ca2+ binding protein calbindin-D(28K) in the beta-cells. Furthermore, in contrast to wild-type rats, in ZDF rats aging led to a progressive decrease in both insulin and ECaC1 staining. Plasma 1,25-dihydroxyvitamin D3 levels were similar in both control and ZDF rats and decreased with aging. Taken together, our findings indicate that this novel Ca2+ channel may play a role in the regulation of endocrine Ca2+ homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcitriol / blood
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Diabetes Mellitus, Type 2 / metabolism
  • Fluorescent Antibody Technique
  • Islets of Langerhans / metabolism*
  • Islets of Langerhans / ultrastructure
  • Male
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Zucker
  • Reverse Transcriptase Polymerase Chain Reaction
  • TRPV Cation Channels

Substances

  • Calcium Channels
  • RNA, Messenger
  • TRPV Cation Channels
  • TRPV5 protein, rat
  • Calcitriol