Immunization of BALB/c mice with a cadmium-chelate-protein conjugate resulted in the isolation of two hybridoma cell lines (A4 and E5) that synthesized antibodies with different variable regions, but similar metal-chelate affinity. The ability of these two monoclonal antibodies to interact with 12 different metal-chelate complexes was studied using the KinExA 3000 immunoassay instrument. The two antibodies showed the highest affinity for cadmium and mercury complexes of ethylenediamine N,N,N',N'-tetraacetic acid (EDTA). The E5 antibody bound to EDTA complexes of cadmium and mercury with equilibrium dissociation constants (K(d)) of 1.62 x 10(-)(9) M and 3.64 x 10(-)(9) M, respectively. The corresponding values for the A4 antibody were 14.7 x 10(-)(9) M and 3.56 x 10(-)(9) M. Addition of a cyclohexyl ring to the EDTA backbone increased the affinity of E5 for the metal-chelate haptens, while decreasing the binding of A4 to the same haptens. Based on available crystal structures, molecular models were constructed for five different divalent metal-chelate complexes. The models were compared to determine structural features of the haptens that may influence antibody recognition. Difference distance matrixes were used to identify areas of the metal-chelate haptens that differed in three-dimensional space. Antibody affinity correlated well with the extent of total structural difference for these metal-EDTA complexes.