An existing standard catering cart was compared with two prototypes for pushbar and castor design. The first objective of this study was to find out which cart was accompanied with the lowest manually exerted external forces in pushing in a straight way and in pushing a 90 turn. The second objective was to explore effects of the pushbar and castor design of the carts. In the initial and ending phase, the prototypes were accompanied with higher exerted forces compared with the standard catering cart. In pushing straight. the reversed start position of the bigger castors of the prototypes hampered a fluent acceleration and caused higher initial forces. In decelerating, the lower rolling friction of the bigger castors required higher forces to stop the prototypes compared to the standard cart. During the sustained phase, the prototype carts were more favourable. Effects of pushbar and castor design were studied during a turn. The vertical pushbars of the prototypes resulted in lower time-integrated pushing forces. Providing an axis of rotation for turning activities by means of a fixed wheel was proven to be advantageous.