To examine whether the dietary lectin wheat germ agglutinin (WGA) can facilitate binding and uptake of protein drugs due to its cytoadhesive and cytoinvasive properties, conjugates were prepared by covalent coupling of fluorescein-labeled bovine serum albumin (F-BSA) to WGA using divinylsulfone for crosslinking. Increasing the molar ratio of F-BSA/WGA resulted in 2.6-8.7 times higher Caco-2 binding as compared with glycyl-F-BSA. About 75% of F-BSA-WGA were bound specifically to Caco-2 cells according to inhibition studies in presence of the complementary carbohydrate. The Caco-2 association of F-BSA-WGA was temperature-dependent indicating active uptake of membrane bound conjugate, which was confirmed by confocal microscopy. The conjugate accumulated within lysosomal compartments followed by proteolytic degradation of F-BSA-WGA 1-4 h after conjugate loading as observed by equilibrating the intracellular pH with monensin. Finally low molecular weight degradation products of the proteinaceous prodrug appear in the extracellular medium. Contrary to Caco-2 single cells, a minor part of the conjugate is degraded by brush border proteases already 30 min after exposure to Caco-2 monolayers. But most of the conjugate is taken up into differentiated cells and processed as in single cells. Though the enzymic barrier remains to be surmounted, WGA-mediated drug delivery is a promising strategy for peroral delivery of even high molecular weight drugs to overcome the mucosal barrier.