To investigate the capability of neurite regeneration from retinal ganglion cells (RGCs) in an adult human retina and to evaluate the effect of neurotrophin on the neurite regeneration, an in vitro model for retinal explants was developed. A human retina was obtained from a 70 year old patient with retrobulbar carcinoma. The retina was excised and the retinal explants were cultured in serum-free medium with or without brain-derived neurotrophic factor. The capability of neurite regeneration was evaluated by counting the numbers of outgrowing neurites outside the retinal explants. In culture without brain-derived neurotrophic factor (control), there was no neurite outgrowth from the retinal explants after 2 days. And at 3 days in culture, a small number of outgrowing neurites were first observed outside the retinal explants. In contrast, within 24 hr in culture with brain-derived neurotrophic factor, there were a considerable number of elongating neurites with spread growth cones from the retinal explants. Immunohistochemical analysis revealed that these neurites were derived from RGCs. The addition of brain-derived neurotrophic factor increased the number of outgrowing neurites approximately 10-fold compared to that of the control at 3 days in culture. The enhancement of neurite regeneration induced by brain-derived neurotrophic factor continued for longer than 1 week in culture. In conclusion, an aged human retina can regenerate neurites from RGCs in vitro and brain-derived neurotrophic factor significantly promotes the regeneration.
Copyright 2001 Academic Press.