Proliferation of fibroblasts contributes to the adventitial thickening observed during the development of hypoxia-induced pulmonary hypertension. However, whether all or only specific subpopulations of fibroblasts proliferate during this process is unknown. Because lung, skin, and gingiva contain multiple fibroblast subpopulations, we hypothesized that the pulmonary artery (PA) adventitia of neonatal calves is composed of multiple fibroblast subpopulations and that only selective subpopulations expand under chronic hypoxic conditions. Fibroblast subpopulations were isolated from PA adventitia of control calves using limited dilution cloning techniques. These subpopulations exhibited marked differences in morphology, actin expression, and serum-stimulated growth. Only select fibroblast subpopulations demonstrated the ability to proliferate in response to hypoxia. Fibroblast subpopulations were similarly isolated from calves exposed to hypoxia (14 days). With regard to morphology, actin expression, and serum-stimulated growth of subpopulations, there were no obvious differences in fibroblast subpopulations between the hypoxic and the control calves. However, the number of fibroblast subpopulations with about a twofold increase in hypoxia-induced DNA synthesis was significantly greater in the hypoxic calves (26%) compared with control calves (10%). We conclude that the bovine PA adventitia comprises numerous phenotypically and biochemically distinct fibroblast subpopulations and that select subpopulations expand in response to chronic hypoxia.