A series of 22 novel synthetic N-acyl-homoserine lactone analogues has been evaluated for both their inducing activity and their ability to competitively inhibit the action of 3-oxo-hexanoyl-L-homoserine lactone, the natural inducer of bioluminescence in the bacterium Vibrio fischeri. In the newly synthesized analogues, the extremity of the acyl chain was modified by introducing ramified alkyl, cycloalkyl or aryl substituents at the C-4 position. Most of the analogues bearing either acyclic or cyclic alkyl substituents showed inducing activity. In contrast, the phenyl substituted analogues displayed significant antagonist activity. We hypothesized that the antagonist activity of the phenyl compounds may result from the interaction between the aryl group and aromatic amino acids of the LuxR receptor, preventing it from adopting the active dimeric form.