Impulse backscattering measurements by a thick-walled finite cylindrical shell are examined in the time-frequency domain to identify and characterize individual ray contributions from generalized Lamb waves excited on the shell. Previous experiments and analysis in the frequency-aspect angle domain [S. F. Morse et al., J. Acoust. Soc. Am. 103, 785-794 (1998)] indicate that large backscattering enhancements occur in the midfrequency region for the shell tilted at large angles. Presently this experimental data is examined in the time-frequency domain for selected angles of incidence. Individual ray contributions are evident and their evolution over aspect angle is discussed. The most prominent contribution is due to the meridional ray of the a0 leaky Lamb wave. This feature distinctly highlights the truncation of the shell and is found over a range of aspect angles spanning 200 degrees for the frequencies examined. Also observed are periodic features corresponding to end-reflected helical waves of the a0-. These scattering features are significantly different from those reported for thin-walled finite cylinders at low frequencies. The present results may be useful for target identification and localization and as a comparison tool for high-frequency computational scattering models.