We report on the implementation of a dense 512-beam free-space optical interconnect linking four optoelectronic VLSI chips at the backplane level. The system presented maximizes the positioning tolerances of the components by use of slow f-number (f/16) Gaussian beams and oversized apertures. A beam-clustering scheme whereby a 4 x 4 array of beams is transmitted by each minilens is used to provide a high channel density. A modular approach is used to decrease the number of degrees of freedom in the system and achieve passive alignment of the modules in the final integration phase. A design overview as well as assembly and experimental results are presented.