Theileria annulata is a tick-transmitted protozoan that causes tropical theileriosis, an often fatal leukoproliferative disorder of cattle. To characterize and identify parasite proteins suitable as diagnostic antigens and/or vaccine candidates, a cDNA clone encoding a macroschizont stage protein was isolated and characterized (here designated TaSP). The gene, present as a single copy within the parasite genome, is transcribed in the sporozoite and schizont stage and codes for a protein of about 315 amino acids, having a predicted molecular weight of 36 kDa. Allelic variants were found within single parasite isolates and between isolates originating from different geographical regions. The N-terminal part contains a predicted signal peptide and the C-terminal section encodes membrane-spanning regions. Comparison of a number of cDNA clones showed that both these sequence regions are conserved while the central region shows both size and amino acid sequence polymorphism. High identity of the N- and C-terminal regions with the polymorphic immunodominant molecule (PIM) of Theileria parva (identity of 93%), the existence of a central polymorphic region and two short introns within genomic clones suggest that the presented gene/protein may be the T. annulata homologue of PIM. However, the central region of TaSP has no significant identity with PIM, contains no repetitive peptide motifs and is shorter, resulting in a lower molecular weight. The existence of the predicted secretion signal peptide and membrane spanning regions suggest that TaSP is located at the parasite membrane.