Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3

J Biol Chem. 2002 May 10;277(19):16648-54. doi: 10.1074/jbc.M201062200. Epub 2002 Feb 28.

Abstract

Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Escherichia coli / enzymology
  • Glutathione / metabolism
  • Glutathione Transferase / chemistry*
  • Glutathione Transferase / genetics
  • Glutathione Transferase / metabolism
  • Humans
  • Hydrogen-Ion Concentration
  • Kinetics
  • Models, Chemical
  • Mutagenesis, Site-Directed
  • Mutation
  • Phenylalanine / chemistry
  • Steroid Isomerases / chemistry
  • Substrate Specificity
  • Sulfhydryl Compounds / chemistry
  • Tyrosine / chemistry

Substances

  • Sulfhydryl Compounds
  • Tyrosine
  • Phenylalanine
  • Glutathione Transferase
  • Steroid Isomerases
  • steroid delta-isomerase
  • Glutathione