In this report we characterize two Arabidopsis thaliana proteins, named AtCBP20 and AtCBP80, that are homologues of human subunits of a nuclear cap-binding protein complex (CBC). AtCBP20 has a calculated molecular mass of 29.9 kDa, and AtCBP80 is a 96.5 kDa protein. AtCBP20 exhibits 68% identity and 82% similarity to human CBP20. Like its human homologue, AtCBP20 contains a canonical RNA binding domain (RBD) with single RNP2 and RNP1 motifs. In addition to the N-terminal part, which is similar to the human protein, AtCBP20 has a long C-terminus rich in arginine, glycine and aspartate residues. The second subunit of the Arabidopsis cap-binding complex, AtCBP80, shows 28% identity and 50% similarity to its homologue from HeLa cells. The protein contains a MIF4G domain at its N-terminus, the feature characteristic to all analyzed CBP80s. This domain, described also in eIF4G and NMD2 proteins, is thought to be involved in protein-protein and also in protein--RNA interactions. Both proteins AtCBP20 and AtCBP80 are encoded by single-copy genes in the A. thaliana genome. The AtCBP20 gene is located on chromosome V, and the AtCBP80 gene is encoded by chromosome II. Among introns identified in the AtCBP20 gene, we discovered an U12 type intervening sequence (an AT-AC intron). This intron is spliced out very efficiently in plants, but when isolated and tested for splicing in tobacco protoplasts, the efficiency of the U12 intron excision was low. Splicing efficiency of the U12 intron is improved by the addition of exon and intron sequences upstream or downstream of the U12 intron. AtCBP20 and AtCBP80 are constitutively expressed in all examined organs of A. thaliana, including roots, stems, leaves and flowers. Interestingly, the steady-state level of both transcripts seem to be very similar in all tissues analyzed.