Recent studies indicate that regulation of the actin cytoskeleton is important for protein trafficking, but its precise role is unclear. We have characterized the ARF1-dependent assembly of actin on the Golgi apparatus. Actin recruitment involves Cdc42/Rac and requires the activation of the Arp2/3 complex. Although the actin-binding proteins mAbp1 (SH3p7) and drebrin share sequence homology, they are differentially segregated into two distinct ARF-dependent actin complexes. The binding of Cdc42 and mAbp1, which localize to the Golgi apparatus, but not drebrin, is blocked by occupation of the p23 cargo-protein-binding site on coatomer. Exogenously expressed mAbp1 is mislocalized and inhibits Golgi transport in whole cells. The ability of ARF, vesicle-coat proteins, and cargo to direct the assembly of cytoskeletal structures helps explain how only a handful of vesicle types can mediate the numerous trafficking steps in the cell.