In normal human melanocytes various mitogens activate the mitogen-activated protein kinases ERK1/2 and the downstream transcription factor CREB (Ca2+/cAMP response element binding protein). Endothelin-1, basic fibroblast growth factor, and alpha-melanotropin interact synergistically to stimulate human melanocyte proliferation. The former two mitogens phosphorylated ERK1/2, its substrate p90rsk, and CREB. Alpha-melanotropin, forskolin, or dibutyryl cAMP failed to phosphorylate any of those targets, however. The concomitant presence of endothelin-1, basic fibroblast growth factor, and alpha-melanotropin significantly potentiated CREB phosphorylation. The mitogen-induced phosphorylation of p90rsk and CREB was dependent on ERK1/2 activation, and was mediated by intracellular calcium mobilization and by protein kinase C and tyrosine kinase activation, but not by activation of the cAMP-dependent protein kinase A. Exposure of melanocytes to ultraviolet radiation B resulted in the phosphorylation of the stress-induced mitogen- activated protein kinases p38 and JNK/SAPK, but not ERK1/2. Ultraviolet radiation B induced the phosphorylation of CREB via a pathway that was partially dependent on p38, but had no effect on p90rsk or ERK1/2. Therefore, in human melanocytes, CREB is a common downstream target for distinct effectors that are involved in either mitogenic signaling or stress signaling initiated by ultraviolet radiation B.