Differently hydrated films of photosystem II (PSII) core complexes from Synechococcus elongatus were prepared in a humidity-controlled infrared cell. The relative humidity was changed by a simple method of placing a different ratio of glycerol/water solution in the sealed cell. The extent of hydration of the PSII film was lowered as the glycerol ratio increased. FTIR difference spectra of the water oxidizing complex upon the first to sixth flashes were measured at 10 degrees C using these hydrated PSII films. The FTIR spectra (1800-1200 cm(-1)) of the PSII films hydrated using 20% and 40% glycerol/water showed basically the same features as those of the core sample in solution [Noguchi, T., and Sugiura, M. (2001) Biochemistry 40, 1497-1502], and the prominent peaks exhibited clear period four oscillation patterns. These observations indicate that the S-state cycle properly functions in these hydrated samples. In the PSII films less hydrated, however, the efficiencies of S-state transitions decreased as the extent of hydration was lowered. This tendency was more significant in the S2 --> S3 and S3 --> S0 transitions than in the S1 --> S2 and S0 --> S1 transitions, indicating that the reactions or movements of water molecules are more strongly coupled with the former two transitions than the latter two. The implication of this observation was discussed in light of the water oxidizing mechanism especially in respect to the steps of substrate incorporation and proton release. Furthermore, in the OH stretching region (3800-3000 cm(-1)) of the first-flash spectrum, a differential signal was observed at 3618/3585 cm(-1), which was previously found in the S2/S1 spectrum of a frozen sample at 250 K and assigned to the water vibrations [Noguchi, T., and Sugiura, M. (2000) Biochemistry 39, 10943-10949]. The fact that the signal appeared even in rather dehydrated PSII films at a physiological temperature (10 degrees C) supported the idea that this water is located in the close vicinity of the Mn cluster and directly involved in the water oxidizing reaction. The results also showed that moderate hydration of the PSII sample made the whole OH region measurable, escaping from absorption saturation by bulk water, and thus will be a useful technique to monitor the water reactions during the S-state cycle using FTIR spectroscopy.