A novel solvent-relief-self-seeding (SRSS) process was applied to grow bulk polygonal tubular single crystals of Sb(2)E(3) (E = S, Se), using SbCl(3) and chalcogen elements E (E = S, Se) as the raw materials at 180 degrees C for 7 days in ethanol solution. The products were characterized by various techniques, including X-ray powder diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), electronic diffraction (ED), and X-ray photoelectron spectra (XPS). The calculated electrical resistivities of the tubular single crystals in the range 20-320 K were of the order of 10(5)-10(6) Omega cm for Sb(2)S(3) and 10(3)-10(4) Omega cm for Sb(2)Se(3), respectively. The studies of the optical properties revealed that the materials formed had a band gap of 1.72 eV for Sb(2)S(3) and 1.82 eV for Sb(2)Se(3), respectively. The optimal reaction conditions for the growth of bulk tubular single crystals were that the temperature was not lower than 180 degrees C and the reaction time was not shorter than 7 days. The possible growth mechanism of tubular crystals was also discussed.