Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture

Med Phys. 2001 Dec;28(12):2427-31. doi: 10.1118/1.1418015.

Abstract

We have applied the synthetic-aperture method to linear-scanning microwave-induced thermoacoustic tomography in biological tissues. A nonfocused ultrasonic transducer was used to receive thermoacoustic signals, to which the delay-and-sum algorithm was applied for image reconstruction. We greatly improved the lateral resolution of images and acquired a clear view of the circular boundaries of buried cylindrical objects, which could not be obtained in conventional linear-scanning microwave-induced thermoacoustic tomography based on focused transducers. Two microwave sources, which had frequencies of 9 and 3 GHz, respectively, were used in the experiments for comparison. The 3 GHz system had a much larger imaging depth but a lower signal-noise ratio than the 9 GHz system in near-surface imaging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustics
  • Algorithms
  • Biophysical Phenomena
  • Biophysics
  • Image Processing, Computer-Assisted / methods*
  • Microwaves*
  • Radiology / methods*
  • Temperature