Intercellular adhesion molecule 3 (ICAM-3) is a leukocyte-specific receptor involved in primary immune responses. We have investigated the interaction between ICAM-3 and ezrin/radixin/moesin (ERM) proteins and its role in LFA-1-induced cell-cell interactions and membrane positioning of ICAM-3 in polarized migrating lymphocytes. Protein-protein binding assays demonstrated a phosphatidylinositol 4,5-bisphosphate-induced association between ICAM-3 and the amino-terminal domain of ERM proteins. This interaction was not essential for the binding of ICAM-3 to LFA-1. Dynamic fluorescence videomicroscopy studies of cells demonstrated that moesin and ICAM-3 coordinately redistribute on the plasma membrane during lymphocyte migration. Furthermore, overexpression of the amino-terminal domain of moesin, which lacks the consensus moesin actin-binding site, caused the subcellular mislocalization of ICAM-3. A CD4 chimerical protein containing the cytoplasmic tail of ICAM-3 was targeted to the trailing edge. Point mutation of Ser(487), Ser(489), and Ser(496) to alanine in the juxtamembrane region of ICAM-3 significantly impaired both ERM binding and polarization of ICAM-3. ERM-directed polarization of ICAM-3 was also impaired by phosphorylation-like mutation of Ser(487) and Ser(489), but not of Ser(496). Our results underscore the key role of specific serine residues within the cytoplasmic region of ICAM-3 for its ERM-directed positioning at the trailing edge of motile lymphocytes.