We have previously reported that N-ethylmaleimide induces apoptosis through activation of K(+), Cl(-)-cotransport in HepG2 human hepatoblastoma cells. In this study, we investigated the role for reactive oxygen species as a mediator of the apoptosis induced by N-ethylmaleimide. N-ethylmaleimide induced a significant elevation of intracellular level of reactive oxygen species. Treatment with antioxidants (N-acetyl cysteine, N,N'-diphenyl-p-phenylenediamine) which markedly suppressed generation of reactive oxygen species, significantly inhibited the N-ethylmaleimide-induced activation of K(+), Cl(-)-cotransport and apoptosis. Inhibitors of NADPH oxidase (diphenylene iodonium, apocynin, D-(+)-neopterine) also significantly blunted the generation of reactive oxygen species, activation of K(+), Cl(-)-cotransport and apoptosis induced by N-ethylmaleimide. These results suggest that reactive oxygen species generated through activation of NADPH oxidase may play a role in the N-ethylmaleimide-induced stimulation of K(+), Cl(-)-cotransport and apoptosis in HepG2 cells.