Vero cytotoxin (VT)-producing Escherichia coli (VTEC), such as E. coli O157:H7, are emerging foodborne pathogens worldwide. VTs are associated with hemorrhagic colitis and hemolytic uremic syndrome in humans. Attachment of the B subunit of VTs to its receptor, globotriaosylceramide (Gb3), at gut epithelium is the primary step and, consequently, the A subunit of VTs inhibits protein synthesis in the target cell. Proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, up-regulate Gb3 expression, increase sensitivity to VTs, and enhance VT action in developing disease. Currently, there is a growing interest in probiotics, given the increasing occurrence of antibiotic-resistant bacteria. In particular, much work on bifidobacteria among probiotics, regarded as microorganisms targeted for technological and therapeutic applications, has been performed. In Korea, the neutralizing effect of the culture supernatant of Bifidobacterium longum HY8001, Korean isolate, against the VTs from E. coli O157:H7 was found. Therefore, this study focused on the raveling of the inhibitory effect of B. longum HY8001 against VTs, through the interference B subunit of VTs and Gb3 interaction. Mice were inoculated intragastrically with B. longum HY8001 culture supernatant before and after challenge with E. coli O157:H7. Control mice were inoculated intragastrically only with E. coli O157:H7. Cytokine, TNF-alpha, and IL-1beta levels in sera and expression of their mRNA were decreased, and expression of Gb3 in renal tubular epithelial cells was reduced in mice treated with B. longum HY8001 culture supernatant. In competitive enzyme-linked immunosorbent assays (ELISAs), the culture supernatant of B. longum HY8001 primarily binds VTs to interfere the VTs with Gb3 interaction. These results suggest that soluble substance(s) in B. longum HY8001 culture supernatant may have inhibitory activity on the expression of Gb3, VT-Gb3 interaction, or both. Further study should be done to elucidate the property of soluble substances in B. longum HY8001 culture supernatant.