Tissue-engineered heart valve leaflets: an animal study

Int J Artif Organs. 2001 Sep;24(9):642-8.

Abstract

Background: Tissue-engineered heart valve leaflets are a promising way to overcome the inherent limitations of current prosthetic valves. The aim of this study was to compare the biological responses of an autologous cell seeded scaffold and an acellular scaffold implanted in the pulmonary valve leaflet in the same animal.

Methods: Myofibroblasts and endothelial cells were isolated and cultured from an ovine artery. A synthetic biodegradable scaffold consisting of polyglycolic acid and polylactic acid was initially seeded with the myofibroblasts, then coated with endothelial cells. Cells were seeded using a medium containing collagen and cultured. A tissue-engineered construct and a plain scaffold were implanted as double pulmonary valve leaflet replacement in the same animal in an ovine model (n=3). Additionally, the tissue-engineered construct (n=2) and the plain scaffold (n=2) were implanted as single valve leaflet replacements for long-term analysis. After sacrifice, the implanted valve leaflet tissues were retrieved, analyzed visually and using light microscopy.

Results: Three animals that underwent replacement of two valve leaflets with a tissue-engineered construct and a plain scaffold, survived only a short-time (12, 24, 36 hours). The death was attributed to heart failure caused by severe pulmonary insufficiency. Animals that underwent single valve leaflet replacement survived longer and were electively sacrificed at 6 and 9 weeks after operation. The analysis of the leaflets from the short-term survivors showed that the tissue-engineered constructs contained less fibrins and protein exudates than the plain scaffold. In contrast, leaflets obtained from animals surviving 6 and 9 weeks showed similar well organized granulation tissues in the tissue-engineered constructs and the plain scaffolds.

Conclusion: This animal experiment demonstrates that in the early phase of implantation, the tissue-engineered construct shows a better biological response in terms of antithrombogenicity than the plain scaffold, although both of them have similar results in the later reparative phase.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Echocardiography, Doppler, Color
  • Heart Valves* / diagnostic imaging
  • Male
  • Membranes, Artificial
  • Polymers
  • Sheep
  • Tissue Engineering*

Substances

  • Membranes, Artificial
  • Polymers