This paper analyzes the effects of Tween 80, Pluronic F-127, sodium dodecylsulfate (SDS), and benzalkonium chloride on the macro and microviscosity of Carbopol 934NF (0.25-0.50 g/dl) pharmaceutical gels. Carbopol/surfactant interactions, which were reflected in changes in the intrinsic viscosity of the polymer and in shifts of IR spectra bands of films, considerably modified the rheological properties of the gel (flow and oscillatory rheometry) and the diffusion coefficients of polystyrene particles (dynamic light scattering, DLS). At pH 4, any surfactant at a concentration of 0.01 g/dl promoted interpolymer connections producing an open three-dimensional network with maximum viscous and elastic moduli, which does not disturb the diffusive movement of polystyrene particles. An increase in non-ionic surfactant (0.05-0.50 g/dl) gradually decreased viscosity and elasticity since there were more surfactant molecules to surround each carbopol particle, forming intrapolymeric micelles and breaking the interpolymer connections. This macroscopic effect is, however, not reflected in a decrease but in an increase in microviscosity (estimated by DLS) owing to the formation of larger carbopol/surfactant aggregates and free micelles that contribute significantly to the obstruction of the diffusional path. Both ionic surfactants decreased macroviscosity owing to ionic aggregation (benzalkonium chloride) or increase in ionic strength (mainly SDS), while the repercussion on the diffusion of polystyrene particles was dramatically different, and was hindered (due to the carbopol/surfactant aggregates) or enhanced (due to the shrinking of carbopol microgels), respectively. At pH 7.4, the ionization of the carboxylic groups produced an expansion of the polymer chains accompanied by a huge increase in viscosity and elasticity and a decrease in diffusion coefficients in comparison with those obtained at pH 4. The effects of the surfactants were similar to those observed at pH 4 but less intense. Chloramphenicol release studies (Franz-Chien cells) revealed that 0.01 g/dl surfactant did not affect the diffusion while a change in pH dramatically altered the process. The results show that by choosing the appropriate proportion of the most suitable surfactant, it is possible to modulate the flow behavior, elastic properties, and diffusional microenvironment of carbopol gels, without losing the pH-dependent gelling ability, which could improve the suitability of carbopol gels for drug delivery through different routes.